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UN EXERCICE D'ECHAUFFEMENT

Combien font 15x17 (... sans calculette) ?

Pendant les 15 s a effectuer la multiplication votre cerveau a consommé 315 J.
(300 J pour « rester en vie » + 15 J pour ce calcul)

Le budget énergétique d’'une multiplication sur un CPU moderne :

Coit Energétigue [pJ]

32-bit Integer (INT32) Addition 0,1 pJ
32-bit Float (FP32) Addition 0.9 pJ
32-bit Float (FP32) Multiplication 3.7 pJ
32-bit DRAM Read ~16 a >100 pJ (LPDDR ou DDR3/DDR4)

Note: La consommation énergéetique dépend de la technologie de gravure. Les gains en dessous de 3nm ne
sont plus linéaires (augmentation de pertes liées aux effets quantiques).



EVOLUTION DU MACHINE LEARNING, DU DEEP LEARNING

VERS L'IA

1943 - Neurone artificiel - le premier modéle mathématique (McCulloch
et Pitts)

1957 - Perceptron - un algorithme d'apprentissage supervisé inspiré du
fonctionnement des neurones biologiques (Rosenblatt)

1986 — Rétropropagation - algorithme de rétropropagation relance
I'intérét pour les réseaux de neurones multicouches, permettant
I'apprentissage plus complexe (Rumelhart, Hinton & Williams)

< hiver de I'lA de 1990 a 2000 >

2012 - Révolution du deep learning — (Hinton et ses étudiants)
remportent le concours ImageNet avec AlexNet, un réseau de neurones
convolutifs profond, marquant le début de I'ére du deep learning
moderne.

2017 - Transformer - L'article “Attention is All You Need” (Vaswani et
al.) introduit le modele Transformer, qui révolutionne le traitement du
langage naturel et devient la base des modéles comme BERT, GPT, etc.
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temps

1999 — NVIDIA introduit le terme “GPU” avec la
GeForce 256 — Début de I'accélération graphique
dédiée.

2006 — Lancement de CUDA par NVIDIA —
Permet aux GPU de servir au calcul parallele
général, essentiel pour I'lA.

2017 — Introduction des Tensor Cores avec
I'architecture Volta — Accélération massive des
calculs de matrices pour le deep learning.

2020 - Architecture Ampere (NVIDIA A100) —
GPU optimisé pour I'entrainement de modéles
massifs (ex. GPT-3)



QUE REPRESENTE UNE TACHE IA EN TERMES
DE CALCUL ET ... D’ENERGIE

YOLOvS5 - Détection d'objets en temps réel - Détection
d’objets dans des images (ex. voitures, personnes,
animaux).

*Taille du modéle : ~7 millions de parameétres (YOLOvS5s).

*Temps d'entrainement : Sur un dataset comme COCO
(~120k images), avec un GPU NVIDIA V100 : quelques
heures a 1 jour

*Temps d'inférence : ~10 ms par image sur GPU (100 FPS)

-Consommation énergétique estimée :

« Entrainement complet: ~1 a 5 kWh (selon GPU et

durée).

* Inférence: ~0.01 Wh par image.
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GPT-3 — Génération de texte - Compréhension et
génération de texte (ex. rédaction, traduction, dialogue).

Taille du modeéle : 175 milliards de parametres.

*Temps d'entrainement :

« Sur des clusters de centaines de GPU pendant
plusieurs semaines.

« Estimation : ~50 GWh (équivalent a 3 jours
d’électricité d'une métropole).
*Temps d'inférence :
« ~0.5a 1seconde pour générer 100 tokens sur
GPU A100.
«Consommation énergétique estimée :

* Inférence : ~0.02 a 0.05 Wh
par requéte (selon longueur).



A L’ECHELLE PLANETAIRE 1/3?

La moyenne d’émissions de CO, par kilowattheure (kWh) d’électricité produite aux Etats-Unis est 0,367 kg CO, par kWh
environ (I'U.S. Energy Information Administration (EIA), 2023)

Ca donne une estimation 18 t de CO, pour UN SEUL entrainement de GPT-3.

L’entrainement optimisé de chatGPT-3
aurait généré 626 t de CO..

Pourqui ? ... car on répéte I'entrainement
beaucoup de fois pour choisir les meilleurs valeurs
d’hyperparamétres.
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https://arxiv.org/abs/1906.02243

A L’ECHELLE PLANETAIRE 2/3 ?

Aujourd’hui, on estime 700M d'utilisateurs quotidiens de GPT ... (sans tenir compte d'autres modeéles)

Chat GPT n’est pas le pire ... la génération T2V Sora (OpenAl), Veo (DeepMind), Vibes (META) est bien plus
énergivore encore.

Exemple [1] :

Génération de vidéo clip ~5s (81 images), 1 280 x 720
pixels

WAN2.1-T2V-14B (14 milliards de parametres) 415 Wh
WAN2.1-T2V-1.3B (1,3 milliard de paramétres) 90 Wh

Consommation quadratique fonction du temps et de la résolution de la vidéo.
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[1] Delavache, et al. 2025, https://arxiv.org/pdf/2509.19222



https://arxiv.org/pdf/2509.19222
https://arxiv.org/pdf/2509.19222

A L’ECHELLE PLANETAIRE 3/3?

40 Md tonnes CO2 ont été produites en 2024 a I'échelle planétaire.

L'impact de I'lA est estimé aujourd’hui a :

> 3a4 %des émissions de gaz a effet de serre (GES) dans le monde [1, 2], et
> 2,5 % de 'empreinte carbone de la France [3]

Dépassant les émissions du transport aérien (~ 2%).

Remarque:

Il n'y a pas que la consommation énergétique ... il y a aussi consommation de I'eau (refroidissement).

» [1] https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
oz e ttps://theshiftproject.org, Pour Une sobriété Numeérique (rapport 7
AT |psL# [2] hitps://theshiftproj Pour Une sobriété Numéri 2025
[3] ARCEP, Grands-Dossiers-Thematiques-Transverses (rapport 2025)
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QUE PROPOSONS-NOUS ?

1. Permettre aux développeurs d'optimiser leur code

# TT1L5 adieer

2. Optimiser I'exécution de grosses taches de calcul

sur les supercalculateurs Thése de Roblex Nana Tchakouté 2023-2025
(présentée le 5 décembre prochain)

une des premiéres théses du TTI.5

Centres de recherche impliqués : V) <

1

Claude Tadonki (CRI)

Youssef Mesri (CEMEF)

LNl

Petr Dokladal (CMM)

Objectifs : Réduire la consommation énergétique sans impacts sur les
performances ni la dégradation du service.



CONSOMMATION D'UN NCEUD DE CALCUL :
REPARTITION PAR COMPOSANT

" GPU

204 " CPU

RAM
" Storage

| 6% Cooling
\ Network
6y, 2%o[tOthers

W Power supply
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Energy optimization technigques

Static approaches Dynamic approaches

Hardware

e Dynamic Power
Management

Hardware

e Transistor and Circuit
design

« Compilation optimization  Dynamic Component
e Data structure Deactivation

e Multicore/Multithread organization e DVS, DFS and DVFS e Jobs rescheduling

* Hybrid CPU design * Programming rules » On/Off policies * Dynamics adaptation

 Energy aware dedicated e Programming languages « Pand C states  Workload balancing
architectures efficiency e CPU clock speed « Workload consolidation

e Heterogeneous * Process binding/pinning variation techniques
architectures * Energy prediction Workload peak reduction

Power Capping
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EA2P - NOUVEL OUTILS DE MESURE D'ENERGIE L.

CPU
RAM ’

On a besoin d’'une mesure plus précise qu'un wattmetre :
1. Déclinée par composant
2. Enrésolution temporelle (~1ms) e

Storage
Coaling
Network

EA2P : Un profileur énergétique multiplateforme pour Python (applications 1A)

« Un profileur énergétique multi-composant, mesurant la consommation du CPU, du GPU et estimant celle
de la RAM.

« Basé sur Python, facile a intégrer dans les workflows IA ou HPC.

« S'appuie sur des APl matérielles existantes (interfaces RAPL, Linux Perf, Nvidia-SMI, ROCm-SMI)

« Utilise un modele analytique pour estimer la consommation énergétique de la RAM sur les plateformes ne
disposant pas de capteurs dédiés.

« Validé expérimentalement pour sa flexibilité, sa précision relative et son utilité dans divers scénarios de
profilage.



EA2P ARCHITECTURE

PowerCapl/

p

DMI decode Nvidia-SMI ROCm-SMI

Per{LfﬂIE)OIS (Linux) (Windows/Linux) (Linux)
Forces :
« Agrégation des informations des
différents composants RAPL Interface _bMmI NVML ROCm
« Calcul hybride naturellement supporté iniesiace
» Multi-processing naturellement supporté | ‘
« Déploiement facile
CPU DRAM GPU
Limitations :
« Echantillonnage limité a ~1ms Intel, AMD Model-based NVIDIA, AMD
estimation
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STRATEGIES D'OPTIMISATION ET DE GESTION DE

COMPROMIS DANS UN DATA CENTER

Dans un data center, nombre de taches entrent en concurrence.
Historiguement, leur exécution est basée sur le principe
Premier-Venu=Premier-Servi.

Avec I'avenement de I'lA de nouvelles spécificités apparaissent :
1. Hétérogénéité du HW (avant : CPU ; nouvellement : GPU)

2. Hétérogénéité de taches

Client

Client

m\

"

Server

-

Network
(LAN,
WAN, etc)

. Client /
=

| S0

| —

Client-server model (architecture)

avant : modélisation (phénomeénes physiques — météo, mécanique, méca-fluide, ...) ;
nouvellement : tous types de data (texte, images, réseaux sociaux, modélisation .... )

3. Criticité mixed ( par ex. : prédiction météo : toutes les 6h !!l en dépit d'un entrainement d’'un

nouveau modele de fondation planifié
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NOMBREUX CRITERES A SATISFAIRE 1/2

Performance
Débit : Maximiser le nombre de taches terminées par unité de temps.

Temps moyen de complétion (JCT) : Réduire le délai entre soumission et fin d’exécution.

1. Souvent en tension avec I'équité et I'efficacité énergétique.

4 Energie

Objectif : Réduire la consommation totale et I'empreinte carbone.

Indicateur : Energy-Delay Product (EDP) — équilibre entre performance et sobriété.
Exemples : GreenFlow, GREEN.

Equité
Allocation équitable : Répartition des ressources selon les droits/priorités.
Equité d’expérience : Temps de complétion équitable entre utilisateurs.
Conflits fréquents entre équité et performance.
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NOMBREUX CRITERES A SATISFAIRE 2/2

@ Qualité de Service (QoS)

Objectif : Respect des délais critiques (SLAs).

Indicateur : Taux de dépassement de deadline.
1. Peut réduire le débit global et I'équité.

) Flexibilité & Robustesse

Flexibilité : Adaptation aux charges et imprévus.

Robustesse : Maintien des performances malgré les perturbations.
. Tension entre optimisation locale et résilience globale.

. Stabilité
Objectif : Planification prévisible et minimisation des interruptions.
1. Trop de flexibilité nuit a la reproductibilité et a I'expérience utilisateur.
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LEVIERS D'OPTIMISATION DU SCHEDULER

Hétérogénéité
Choix du matériel (ex. H100 vs A100) impacte performance, consommation et équité.
Décision critique : quel job sur quelle architecture ?

£ Malléabilité

Ajustement dynamique des ressources :
* Nombre de GPUs (k) : plus de GPUs = exécution plus rapide mais plus de consommation.
- Taille de batch (b) : meilleure efficacité GPU, mais contraintes mémoire et convergence.

Le scheduler choisit le meilleur combo (k, b, h) selon I'objectif.

L) Préemption
Interruption d’un job peu prioritaire pour libérer des ressources. Nécessaire pour respecter les délais (SLASs).
1. Coltimportant : perte de travail non sauvegardé — gaspillage énergétique. A utiliser avec parcimonie

AT | psLm 16

MINES PARIS



EAS-SIM : SIMULATEUR POUR LE CO-DESIGN DES

SCHEDULERS IA | Updte GPU Sat

© Pourquoi un simulateur ? _ W Dispatch simulated GPU
Ay ;. , - Job Read Queue EAS-Sim Placements Cluster
Cout élevé : les tests réels mobilisent £ Scheduler J .
des milliers d’heures GPU. Zosls JobjCompletion,
o 0o 1)) D oen
. . , ~ @ = ] T cC
Temps long : une semaine simulée = s |l < o || 22
i A = 2 o 50 Metrics Collector
une semaine réelle. BN S b oT Power SLA. )

Variabilité : les systémes physiques
sont non déterministes (bruit 0S, Power Oracle (9., Zeus, Hades, )
Workload Results &
Trace \ Plots /

[ Performance & J [Scheduling Policies} Generate[Report

réseau, température).

[ sSubmit Jobs

‘s Solution : EAS-Sim
Simulation a événements discrets.

Figure : Architecture du simulateur Eas-Sim

Rapide, extensible, haute fidélité.
Permet I'exploration efficace de politiques multi-objectifs (performance, énergie, équité...).
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APPROCHES DE SCHEDULING EXISTANTES

Pollux (Performance)

Objectif : maximiser le débit.

Heuristique : Shortest Job First (SJF) avec adaptation malleable.

Score basé sur le temps d'exécution estimé, ajusté par un facteur d'age.
Themis (Equité)

Objectif : équité d'allocation entre utilisateurs.

Score modulé par la consommation historique (GPU-seconds).

Priorise les utilisateurs sous-consommateurs.

& Chronos (SLA / criticité mixte)

Objectif : respecter les deadlines.

Priorité selon le temps restant avant échéance.

Jobs urgents classés séparément des jobs best-effort.

Ces heuristiques servent de base pour injecter la conscience énergétique dans les politiques de scheduling.
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ENERGY-DELAY PRODUCT (EDP)

Définition: EDP =P x T2 (P = puissance moyenne, T = durée d’exécution)
© Pourquoi I'EDP ?

Pénalise les configurations :
 Trop rapides mais énergivores.
» Sobre mais trop lentes.

Favorise les compromis : efficacité énergétique + performance.

Avantages

Réduction de la fragmentation du cluster.
Meilleur débit global.
Métrique robuste pour I'optimisation multi-objectifs.
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POLITIQUES NOUVELLES DE SCHEDULING ENERGETIQUES

= Zeus (Performance + Energie)
Version énergétique de Pollux.
Minimise EDP pour chaque configuration malléable.
= Hades (Equité + Energie)
Version énergétique de Themis.
Score = EDP / (consommation historique + 1)
= AuraChronos (SLA + Energie + Préemption)
Priorité aux jobs urgents (slack).
Backfill optimisé via EDP (au lieu du temps brut).
= Charon (Contrainte de puissance)

Allocation conditionnée au respect d'un budget énergétique global (Pcap).
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PROTOCOLE D’'EVALUATION

Durée simulée : 10 heures de fonctionnement du cluster

Répétabilité : Moyenne sur 10 simulations indépendantes

Environnement : Cluster hétérogene avec 16 GPUs :

« 8 x A100 (400W, Ampere)

« 8 x H100 (700W, Hopper)

< Workload

3 modeles DL variés (arrivant en suivant le processus Poissonien A = 0.005 jobs/s) :
« Vision Transformer (ViT-Base, FP32)

« ALBERT v2 (bfloat16)
* ResNet-50 (FP32)
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RESULTATS : UNE NOUVELLE FRONTIERE ENERGIE-
PERFORMANCE

12
~tAd= Pollux (M)
5 Zeus (M) %
= 11 { &~ Hades (M) j H—A
Zeus vs Pollux < &~ Aurachronos (M) T
. s Charon (M)
Pollux : 10.9 jobs/h pour =57 kWh g | Crerer
5
Zeus : 11.0 jobs/h pour =51 kWh s
(@)]
-10.5% d'énergie consommeée, sans perte de performance 5 97
£ | |
X 8 1 i
%9 Pourquoi ? . i , , ,
, , , , , o 40 45 50 55 60
Zeus évite les configurations trop énergivores (ex. H100 inutiles) Total Energy Consumed (kWh)

Meilleur “eco-routing” des jobs — moins de fragmentation

Frontiere de Pareto repoussée : meilleure performance + sobriété

//Q/f | PSL2€ 22

MINES PARIS



BILAN DE LA THESE

© Objectif

Optimiser l'efficacité énergétique des applications IA sur infrastructures modernes.

2 Contributions majeures

EA2P : outil de profilage énergétique multi-plateforme.

Modeles analytiques : prédiction fine de la consommation (=4% d’erreur).
EAS-Sim : simulateur haute fidélité pour le co-design de politiques de scheduling.
Politiques multi-objectifs : Zeus, Hades, AuraChronos, Charon.

Résultats clés

-10% d’'énergie avec Zeus, sans perte de performance.

AuraChronos : SLA garanti, 20x moins de deadlines manquées.

EDP : métrique robuste pour concilier performance et sobriété.
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PERSPECTIVES DE RECHERCHE

Ameélioration des modeles
Intégrer les interférences entre jobs.
Calibration dynamique en ligne.
Co-optimisation globale
Coordination entre OS, hyperparametres et techniques de compression.
@ Extension au continuum Edge—HPC-Cloud
Prise en compte des contraintes réseau, batterie, thermique.
5 IA pour Green Al
Utiliser I'apprentissage par renforcement pour des politiques adaptatives.

Une approche rigoureuse et intégrée pour une |IA durable et responsable.
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Merci de votre attention
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