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UN EXERCICE D’ECHAUFFEMENT

Combien font 15x17 (… sans calculette) ?

Pendant les 15 s à effectuer la multiplication votre cerveau a consommé 315 J.

 (300 J pour « rester en vie » + 15 J pour ce calcul)

Le budget énergétique d’une multiplication sur un CPU moderne :

Note: La consommation énergétique dépend de la technologie de gravure. Les gains en dessous de 3nm ne 

sont plus linéaires (augmentation de pertes liées aux effets quantiques).

Opération Coût Energétique [pJ]

32-bit Integer (INT32) Addition 0,1 pJ

32-bit Float (FP32) Addition 0.9 pJ

32-bit Float (FP32) Multiplication 3.7 pJ

32-bit DRAM Read ~16 à >100 pJ (LPDDR ou DDR3/DDR4) 
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ÉVOLUTION DU MACHINE LEARNING, DU DEEP LEARNING 
VERS L’IA

1943 – Neurone artificiel - le premier modèle mathématique (McCulloch 
et Pitts)

1957 – Perceptron - un algorithme d’apprentissage supervisé inspiré du 
fonctionnement des neurones biologiques (Rosenblatt)

1986 – Rétropropagation - algorithme de rétropropagation relance 
l’intérêt pour les réseaux de neurones multicouches, permettant 
l’apprentissage plus complexe (Rumelhart, Hinton & Williams)

2012 – Révolution du deep learning – (Hinton et ses étudiants) 
remportent le concours ImageNet avec AlexNet, un réseau de neurones 
convolutifs profond, marquant le début de l’ère du deep learning 
moderne.

2017 – Transformer - L’article “Attention is All You Need” (Vaswani et 
al.) introduit le modèle Transformer, qui révolutionne le traitement du 
langage naturel et devient la base des modèles comme BERT, GPT, etc.

1999 – NVIDIA introduit le terme “GPU” avec la 
GeForce 256 → Début de l’accélération graphique 
dédiée.
2006 – Lancement de CUDA par NVIDIA → 
Permet aux GPU de servir au calcul parallèle 
général, essentiel pour l’IA. 
2017 – Introduction des Tensor Cores avec 
l’architecture Volta → Accélération massive des 
calculs de matrices pour le deep learning.
2020 – Architecture Ampere (NVIDIA A100) → 
GPU optimisé pour l’entraînement de modèles 
massifs (ex. GPT-3)
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< hiver de l'IA de 1990 à 2000 >
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QUE REPRÉSENTE UNE TÂCHE IA EN TERMES 
 DE CALCUL ET … D’ÉNERGIE

YOLOv5 – Détection d’objets en temps réel - Détection 

d’objets dans des images (ex. voitures, personnes, 

animaux).

•Taille du modèle : ~7 millions de paramètres (YOLOv5s).

•Temps d'entraînement : Sur un dataset comme COCO 

(~120k images), avec un GPU NVIDIA V100 : quelques 

heures à 1 jour

•Temps d'inférence : ~10 ms par image sur GPU (100 FPS)

•Consommation énergétique estimée : 

• Entraînement complet : ~1 à 5 kWh (selon GPU et 

durée).

• Inférence : ~0.01 Wh par image.

GPT-3 – Génération de texte - Compréhension et 

génération de texte (ex. rédaction, traduction, dialogue).

•Taille du modèle : 175 milliards de paramètres.

•Temps d'entraînement : 

• Sur des clusters de centaines de GPU pendant 

plusieurs semaines.

• Estimation : ~50 GWh (équivalent à 3 jours 

d’électricité d’une métropole).

•Temps d'inférence : 

• ~0.5 à 1 seconde pour générer 100 tokens sur 

GPU A100.

•Consommation énergétique estimée : 

• Inférence : ~0.02 à 0.05 Wh 

par requête (selon longueur).
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A L’ÉCHELLE PLANÉTAIRE 1/3 ?

La moyenne d’émissions de CO₂ par kilowattheure (kWh) d’électricité produite aux États-Unis est 0,367 kg CO₂ par kWh 

environ (l’U.S. Energy Information Administration (EIA), 2023)

Ca donne une estimation 18 t de CO₂ pour UN SEUL entraînement de GPT-3.

L’entraînement optimisé de chatGPT-3 
aurait généré 626 t de CO₂.

Pourqui ?   … car on répète l’entraînement 
beaucoup de fois pour choisir les meilleurs valeurs 
d’hyperparamètres. 

Strubell et al, (2019), https://arxiv.org/abs/1906.02243 

https://arxiv.org/abs/1906.02243
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A L’ÉCHELLE PLANÉTAIRE 2/3 ?

Aujourd’hui, on estime 700M d’utilisateurs quotidiens de GPT … (sans tenir compte d’autres modèles)

Chat GPT n’est pas le pire … la génération T2V Sora (OpenAI), Veo (DeepMind), Vibes (META) est bien plus 

énergivore encore. 

Exemple [1] :

Consommation quadratique fonction du temps et de la résolution de la vidéo.

[1] Delavache, et al. 2025, https://arxiv.org/pdf/2509.19222

Génération de vidéo clip ~5s (81 images), 1 280 x 720 
pixels

Energie

WAN2.1–T2V–14B (14 milliards de paramètres) 415 Wh

WAN2.1–T2V–1.3B   (1,3 milliard de paramètres) 90 Wh

https://arxiv.org/pdf/2509.19222
https://arxiv.org/pdf/2509.19222
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A L’ÉCHELLE PLANÉTAIRE 3/3 ?

40 Md tonnes CO2 ont été produites en 2024 à l’échelle planétaire.

L’impact de l’IA est estimé aujourd’hui à :

➢ 3 à 4 % des émissions de gaz à effet de serre (GES) dans le monde [1, 2], et

➢ 2,5 % de l’empreinte carbone de la France [3]

Dépassant les émissions du transport aérien (~ 2%).

Remarque:

Il n’y a pas que la consommation énergétique … il y a aussi consommation de l’eau (refroidissement).

[1] https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/ 
[2] https://theshiftproject.org,  Pour Une sobriété Numérique (rapport 2025)
[3] ARCEP, Grands-Dossiers-Thematiques-Transverses (rapport 2025) 

https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://www.technologyreview.com/2025/05/20/1116327/ai-energy-usage-climate-footprint-big-tech/
https://theshiftproject.org/
https://theshiftproject.org/app/uploads/2025/02/Rapport-final-v8-WEB.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
https://ecoresponsable.numerique.gouv.fr/docs/2024/etude-ademe-impacts-environnementaux-numerique.pdf
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QUE PROPOSONS-NOUS ?

1. Permettre aux développeurs d’optimiser leur code

2. Optimiser l’exécution de grosses tâches de calcul 

sur les supercalculateurs 

Centres de recherche impliqués :

Thèse de Roblex Nana Tchakouté 2023-2025 
(présentée le 5 décembre prochain)

une des premières thèses du TTI.5

Claude Tadonki  (CRI)

Youssef Mesri (CEMEF)

Petr Dokladal (CMM)

Objectifs : Réduire la consommation énergétique sans impacts sur les 
performances ni la dégradation du service.
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CONSOMMATION D’UN NŒUD DE CALCUL : 
 RÉPARTITION PAR COMPOSANT
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EA2P – NOUVEL OUTILS DE MESURE D’ENERGIE

On a besoin d’une mesure plus précise qu’un wattmètre :
1. Déclinée par composant 
2. En résolution temporelle (~1ms)

EA2P : Un profileur énergétique multiplateforme pour Python (applications IA)
• Un profileur énergétique multi-composant, mesurant la consommation du CPU, du GPU et estimant celle 

de la RAM.
• Basé sur Python, facile à intégrer dans les workflows IA ou HPC.
• S’appuie sur des API matérielles existantes (interfaces RAPL, Linux Perf, Nvidia-SMI, ROCm-SMI)
• Utilise un modèle analytique pour estimer la consommation énergétique de la RAM sur les plateformes ne 

disposant pas de capteurs dédiés.
• Validé expérimentalement pour sa flexibilité, sa précision relative et son utilité dans divers scénarios de 

profilage.
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EA2P ARCHITECTURE

Intel, AMD NVIDIA, AMDModel-based 
estimation

Forces :
• Agrégation des informations des 

différents composants
• Calcul hybride naturellement supporté
• Multi-processing naturellement supporté
• Déploiement facile

Limitations :
• Echantillonnage limité à ~1ms
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STRATÉGIES D’OPTIMISATION ET DE GESTION DE 
COMPROMIS DANS UN DATA CENTER

Dans un data center, nombre de tâches entrent en concurrence.

Historiquement, leur exécution est basée sur le principe 

Premier-Venu=Premier-Servi.

Avec l’avènement de l’IA de nouvelles spécificités apparaissent : 

1. Hétérogénéité du HW (avant : CPU ; nouvellement : GPU)

2. Hétérogénéité de tâches 

 avant : modélisation (phénomènes physiques – météo, mécanique, méca-fluide, …) ;

 nouvellement : tous types de data (texte, images, réseaux sociaux, modélisation …. )

3. Criticité mixed ( par ex. : prédiction météo : toutes les 6h !!! en dépit d’un entraînement d’un 

nouveau modèle de fondation planifié
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NOMBREUX CRITÈRES A SATISFAIRE 1/2

 Performance

Débit : Maximiser le nombre de tâches terminées par unité de temps.

Temps moyen de complétion (JCT) : Réduire le délai entre soumission et fin d’exécution.

 Souvent en tension avec l’équité et l’efficacité énergétique.

 Énergie

Objectif : Réduire la consommation totale et l’empreinte carbone.

Indicateur : Energy-Delay Product (EDP) — équilibre entre performance et sobriété.

Exemples : GreenFlow, GREEN.

 Équité

Allocation équitable : Répartition des ressources selon les droits/priorités.

Équité d’expérience : Temps de complétion équitable entre utilisateurs.

Conflits fréquents entre équité et performance.
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NOMBREUX CRITÈRES A SATISFAIRE 2/2

 Qualité de Service (QoS)

Objectif : Respect des délais critiques (SLAs).

Indicateur : Taux de dépassement de deadline.

 Peut réduire le débit global et l’équité.

 Flexibilité & Robustesse

Flexibilité : Adaptation aux charges et imprévus.

Robustesse : Maintien des performances malgré les perturbations.

 Tension entre optimisation locale et résilience globale.

 Stabilité

Objectif : Planification prévisible et minimisation des interruptions.

 Trop de flexibilité nuit à la reproductibilité et à l’expérience utilisateur.
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LEVIERS D’OPTIMISATION DU SCHEDULER

 Hétérogénéité

Choix du matériel (ex. H100 vs A100) impacte performance, consommation et équité.

Décision critique : quel job sur quelle architecture ?

 Malléabilité

Ajustement dynamique des ressources : 

• Nombre de GPUs (k) : plus de GPUs = exécution plus rapide mais plus de consommation.

• Taille de batch (b) : meilleure efficacité GPU, mais contraintes mémoire et convergence.

Le scheduler choisit le meilleur combo (k, b, h) selon l’objectif.

 Préemption

Interruption d’un job peu prioritaire pour libérer des ressources. Nécessaire pour respecter les délais (SLAs).

 Coût important : perte de travail non sauvegardé → gaspillage énergétique. À utiliser avec parcimonie
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EAS-SIM : SIMULATEUR POUR LE CO-DESIGN DES 
SCHEDULERS IA

 Solution : EAS-Sim

Simulation à événements discrets.

Rapide, extensible, haute fidélité.

Permet l’exploration efficace de politiques multi-objectifs (performance, énergie, équité…).

 Pourquoi un simulateur ?

Coût élevé : les tests réels mobilisent 
des milliers d’heures GPU.

Temps long : une semaine simulée = 
une semaine réelle.

Variabilité : les systèmes physiques 
sont non déterministes (bruit OS, 
réseau, température).

Figure : Architecture du simulateur Eas-Sim



18

APPROCHES DE SCHEDULING EXISTANTES 

 Pollux (Performance)

Objectif : maximiser le débit.

Heuristique : Shortest Job First (SJF) avec adaptation malleable.

Score basé sur le temps d’exécution estimé, ajusté par un facteur d’âge.

 Themis (Équité)

Objectif : équité d’allocation entre utilisateurs.

Score modulé par la consommation historique (GPU-seconds).

Priorise les utilisateurs sous-consommateurs.

 Chronos (SLA / criticité mixte)

Objectif : respecter les deadlines.

Priorité selon le temps restant avant échéance.

Jobs urgents classés séparément des jobs best-effort.

 Ces heuristiques servent de base pour injecter la conscience énergétique dans les politiques de scheduling.
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ENERGY-DELAY PRODUCT (EDP)

Définition : EDP = P × T²                 (P = puissance moyenne, T = durée d’exécution)

 Pourquoi l’EDP ?

Pénalise les configurations : 

• Trop rapides mais énergivores.

• Sobre mais trop lentes.

Favorise les compromis : efficacité énergétique + performance.

 Avantages

Réduction de la fragmentation du cluster.
Meilleur débit global.
Métrique robuste pour l’optimisation multi-objectifs.
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POLITIQUES NOUVELLES DE SCHEDULING ÉNERGÉTIQUES

▪ Zeus (Performance + Énergie)

Version énergétique de Pollux.

Minimise EDP pour chaque configuration malléable.

▪ Hades (Équité + Énergie)

Version énergétique de Themis.

Score = EDP / (consommation historique + 1)

▪ AuraChronos (SLA + Énergie + Préemption)

Priorité aux jobs urgents (slack).

Backfill optimisé via EDP (au lieu du temps brut).

▪ Charon (Contrainte de puissance)

Allocation conditionnée au respect d’un budget énergétique global (Pcap).
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PROTOCOLE D’ÉVALUATION

Durée simulée : 10 heures de fonctionnement du cluster

Répétabilité : Moyenne sur 10 simulations indépendantes

Environnement : Cluster hétérogène avec 16 GPUs : 

• 8 × A100 (400W, Ampere)

• 8 × H100 (700W, Hopper)

 Workload

3 modèles DL variés (arrivant en suivant le processus Poissonien λ = 0.005 jobs/s ) :

• Vision Transformer (ViT-Base, FP32)

• ALBERT v2 (bfloat16)

• ResNet-50 (FP32)
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RESULTATS : UNE NOUVELLE FRONTIÈRE ÉNERGIE-
PERFORMANCE

 Zeus vs Pollux

Pollux : 10.9 jobs/h pour ≈57 kWh

Zeus : 11.0 jobs/h pour ≈51 kWh

 −10.5% d’énergie consommée, sans perte de performance

 Pourquoi ?

Zeus évite les configurations trop énergivores (ex. H100 inutiles)

Meilleur “eco-routing” des jobs → moins de fragmentation

Frontière de Pareto repoussée : meilleure performance + sobriété
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BILAN DE LA THÈSE

 Objectif

Optimiser l’efficacité énergétique des applications IA sur infrastructures modernes.

 Contributions majeures

EA2P : outil de profilage énergétique multi-plateforme.

Modèles analytiques : prédiction fine de la consommation (≈4% d’erreur).

EAS-Sim : simulateur haute fidélité pour le co-design de politiques de scheduling.

Politiques multi-objectifs : Zeus, Hades, AuraChronos, Charon.

 Résultats clés

−10% d’énergie avec Zeus, sans perte de performance.

AuraChronos : SLA garanti, 20× moins de deadlines manquées.

EDP : métrique robuste pour concilier performance et sobriété.
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PERSPECTIVES DE RECHERCHE

 Amélioration des modèles

Intégrer les interférences entre jobs.

Calibration dynamique en ligne.

 Co-optimisation globale

Coordination entre OS, hyperparamètres et techniques de compression.

 Extension au continuum Edge–HPC–Cloud

Prise en compte des contraintes réseau, batterie, thermique.

 IA pour Green AI

Utiliser l’apprentissage par renforcement pour des politiques adaptatives.

 Une approche rigoureuse et intégrée pour une IA durable et responsable.



Merci de votre attention

Petr.Dokladal@minesparis.psl.eu


	DISPOSITIONS VIDES
	Slide 1: Vers une IA durable :
	Slide 2: Un exercice d’Echauffement
	Slide 3: Évolution du machine learning, du deep learning vers l’IA
	Slide 4: QUE représente une tâche IA en termes   de calcul ET … d’énergie
	Slide 5: A l’échelle planétaire 1/3 ?
	Slide 6: A l’échelle planétaire 2/3 ?
	Slide 7: A l’échelle planétaire 3/3 ?
	Slide 8: QUE PROPOSons-nous ?
	Slide 9: consommation d’un nœud de calcul :   Répartition par composant
	Slide 10
	Slide 11: EA2P – Nouvel outils de mesure d’energie
	Slide 12: EA2P architecture
	Slide 13: Stratégies d’optimisation et de gestion de compromis DANS UN DATA CENTER
	Slide 14: nombreux Critères a satisfaire 1/2
	Slide 15: nombreux Critères a satisfaire 2/2
	Slide 16: Leviers d’Optimisation du Scheduler
	Slide 17: EAS-Sim : Simulateur pour le Co-Design des Schedulers IA
	Slide 18: Approches de Scheduling EXISTANTES  
	Slide 19: Energy-Delay Product (EDP)
	Slide 20: Politiques nouvelles de Scheduling Énergétiques
	Slide 21: Protocole d’Évaluation
	Slide 22: Resultats : Une Nouvelle Frontière Énergie-Performance 
	Slide 23: Bilan de la Thèse 
	Slide 24: Perspectives de Recherche 
	Slide 25: Merci de votre attention


