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Why is this relevant?

Climate is already affecting
the power sector

Most models used for energy & climate policy
support do not consider yet

seasonal and long-term climate impacts.

What is the sensitivity to climate variability of the pathways for a carbon neutral
power sector in 2030/2050?
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Hydropower production

Hydropower is the world’s most dominant source of renewable electrical
energy.

It has been identified as highly valuable for climate mitigation due to its low
carbon footprint, high generation efficiency, reliability, and flexibility.

Installed hydropower capacity continues to grow quickly with the aim at
decreasing carbon-based or nuclear power generation.

During 2020, an additional 21 GW of installed hydropower capacity was
added worldwide (3 GW in Europe).

Country INST CAP∗[MW] TOT GEN [TWh]

Norway 29334 141.69

Spain 20294 33.34

France 16947 64.84

Italy 14900 47.62

Austria 8160 42.52

Table: Top five countries by installed hydropower capacity (2020) (*) excluding
pump-storage systems. Data from ENTSO-E platform.
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Hydropower generation

Reservoir (HRes) Run-of-River (HRoR)
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Our challenge

Translating time series of daily climate data (air temperature and precipitation)
into time series of daily hydropower capacity factor

at country level for all Europe.

Capacity factor =
Power Generated

Installed Capacity

Main difficulties:

It is necessary to capture the complex relationship between the availability of
water and the generation of electricity, by considering the coexistence of
several spatial and temporal scale conditions.

Run-of-river hydropower (HRoR) is limited by the flow of the river in which
the power plants are located. Moreover, the water flow is a nonlinear function
of the climate variables and the physical characteristics of the river basins.

The impact of the weather variables on the runoff may occur with a certain
delay, whose determination depends on physically based phenomena (e.g.,
melting snow–local temperature).
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Traditional methods:

Hydrological models

Require several inputs (e.g., climate data and physiographic information of the
power plants locations).
For every location of interest, when all these data are available and the model
parameters are calibrated, hydrological models accurately represent the
rainfall-runoff relationship.
Finally, the transformation from the river runoff to hydropower production requires
additional information about the power plants under investigation (e.g., hydraulic
head).

Long term calendar mean

with the multiplication of extreme weather events occurring in the last years and
predicted in many climate future scenarios, this approach becomes too conservative
and risks to mask the climate change effects.
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France
Historical daily data

Data (1 Jan 2015 – 30 Apr 2018):

Capacity factor (national average)

Precipitations (national average)

Temperature (national average)
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Portugal
Historical daily data

Data (1 Jan 2015 – 30 Apr 2018):

Capacity factor (national average)

Precipitations (national average)

Temperature (national average)
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Our proposal

We want to build a model at the aim of providing an overview of the change in the
European hydroelectricity generation due to different climate scenarios.

We are not interested in providing detailed results in terms of local hydropower
production, but we wish to have information about the variability of the
hydropower production at country level and European regional level subject to
future climate changes.

8/23



Machine learning workflow
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Choice of the ML algorithm: 5-fold cross validation

Training period: 2015-2019

Data aggregated at country level

(a) R =
cov(ȳ,ŷ)
σȳσŷ

(b) nMAE =

∑M
i=1 |ŷi − ȳi|∑M

i=1
ȳi

(c) nRMSE =
RMSE

1
M

∑M
i=1

ȳi
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Random Forest: basic element
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Random Forest
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Model definition via predictors selection

Predictors
M1

(avg)
M2

(NUTS2)
M3

(avg+NUTS2)
Temperature
sync ✓ ✓ ✓
lagged (opt) ✓ ✓ ✓
Precipitation
sync ✓ ✓ ✓
lagged (opt) ✓ ✓ ✓
accum (opt) ✓ ✓ ✓

Available data over the period 1-Jan-2015 to 31-Dec-2019.
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Optimal lags

Figure: Optimal lag and corresponding maximum value of correlation for each country.
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Models comparison: 5-fold cross-validation

(a) R (b) nMAE

(c) nRMSE

Figure
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Model M3

(a) AT (b) CH (c) DE

(d) ES (e) FI (f) FR

Figure: Scatter plot of the modeled and observed capacity factors. We indicate with blue dots the
values in the period December–January–February (DJF), with orange circles the values in the period
March–April–May (MAM), with red dots for June–July–August (JJA) and, finally, with green circles
for September–October–November (SON).
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Model M3

(a) IT (b) NO (c) PT

(d) RO (e) SK

Figure: Scatter plot of the modeled and observed capacity factors. We indicate with blue dots the
values in the period December–January–February (DJF), with orange circles the values in the period
March–April–May (MAM), with red dots for June–July–August (JJA) and, finally, with green circles
for September–October–November (SON).
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Can we use M3 for prediction?
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Insights on country specific issues

France: Autumn’s heavy rainfall

Training period: 2015-2018

Testing period: 2019 (R = 0.44, nMAE = 0.22, and nRMSE = 0.28.)

(a) (b)

Figure: (a) Time series of the observed and modelled capacity factor over the test year 2019, with
training set over 2015–2018. (b) Deviation of the monthly average precipitation in 2019 from the
monthly average precipitation in the four previous years.
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Insights on country specific issues

Portugal: trans-boundary challenge

Figure: Time series of the observed and modeled capacity factor over the test year 2019, with
training set over 2015–2018.
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Insights on country specific issues

Finland: is there any hydropeaking effect?

(a) FI (b) FI

Figure: (a) Time series of the observed CF. (b) Time series of the observed CF (blue line) along
with the time series of CF obtained by models M3 (red line) and M4 (violet line) over the year 2019.
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Insights on country specific issues

Finland: change in the energy mix

Figure: Comparison of the energy mix in Finland in
August.

Installed wind capacity:

459 MW in 2015

1908 MW in 2018
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Conclusions

The growth of the renewables share in the existing grids will require a more
flexible and smarter management of the electric power system. ⇒ Develop a
prediction model to forecast the RES availability based on possible scenarios
of weather conditions.

Machine learning lends itself well for this goal. Our experiments showed that
a more accurate model is obtained for our dataset when we introduce a finer
spatial resolution for the inputs.

ML models are easy to be built and require few physical input parameters.

ML allows modelling the climate dependency of run-of-river hydropower
production at the country level.

The performance varies greatly across countries and seasons. We observed
that the current level of accuracy of the ML outputs for all the countries is
likely not precise enough to give a strong operational advantage.

More historical data would be necessary for opportunely training the learners
and improve the model accuracy and response to extreme or singular events
that have a better probability to be incorporated as the training dataset
improves.

23/23



Merci! Thank you! Grazie!

valentina.sessa@minesparis.psl.eu

mailto:valentina.sessa@minesparis.psl.eu


Leave-one-year-out validation

2015 2016 2017 2018 2019

(a) R (b) nMAE (c) nRMSE
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