
 
 
 
 
 

 
Perceptually Based Frugal Models for Low-Carbon AI  

3-year PhD position  
  

General Context and Challenges   
  
Artificial Intelligence (AI) tools have become ubiquitous in today society. AI allows 
computers to perform “intelligent” tasks such as decision making, problem solving, 
perception/identification and even understanding human communication and 
behavior. At the same time, the impact of AI on the environment has become 
nonnegligible because of its carbon footprint. Indeed, the carbon footprint of 
computer systems is that of the part of fossil sources in the production and 
consumption of electricity. Moreover, fossil sources currently represent a significant 
part of the energy mix. For example, the rate of production of renewable electricity 
close to 100% is only reached in Iceland or Norway within Europe. In other countries, 
the decarbonization of electricity is only expected several decades into the future. 
When it comes to AI, its carbon footprint and role in climate change has recently come 
under intense scrutiny [1]. Awareness was triggered by the observation that training 
a single large language model (NLP) could approach 300 tons of emissions of carbon 
dioxide [2] – that is five times the lifetime emissions of an average car. Compared to 
other industrial sectors the AI impact is also non-negligible: for example, the AI 
environmental impact already globally exceeds that of air transport. Indeed, AI, being 
computationally intensive, is a major carbon emitter.   
  
Rather than being data hungry, a frugal AI improves energy efficiency, thus addressing 
a significant challenge given the widespread use of machine learning. Neuromorphic 
computing is one of the many avenues explored by contemporary research. This 
approach, inspired by the efficient structure and functioning of the human brain, 
completely rethinks the physical architecture supporting deep learning. In this field, 
we focus on computer vision to draw inspiration from mammalian perception. A 
widely used comparison is that a child does not need to see thousands of cats to learn 
to recognize a cat. De facto, a less data-intensive algorithm would consume less 
energy, but the search for frugality goes even further. More concretely, energy 
consumption will be reduced on several levels: smaller model size, far shorter training 
time, and reduced inference time. As a side product, we also expect enhanced 
robustness to adversarial attacks.  
 
 
 Project description :   
  
The contemporary explosion of AI technology was unleashed by the availability of 
powerful computational facilities that allowed increasing the size of datasets to 
unprecedented sizes. AI models are tuned via gradient descent optimization 



techniques. Because these methods operate as searchlight devices, optimization is 
purely mathematical. Consequently, apparently highly scoring AI models may “pay 
attention” to surprisingly irrelevant parts of images. This flaw undermines the liability 
which is typically compensated by using ever larger datasets. This, in return, directly 
impacts the energetic consumption of such models.   
  
We propose to address the above flaw more directly and effectively, via the 
development of perceptually based models. Like the human visual system, these 
models are specifically sensitive to perceptually pertinent features, such as textures, 
object contours, and their spatial arrangements. Research in perception has a long 
history. The links between perception and image processing started with detecting 
perceptually meaningful events. According to a long-standing principle in sensory 
processing, every large image deviation from “uniform noise” should be perceptible, 
provided this large deviation corresponds to an a priori fixed list of geometric 
structures (lines, curves, closed curves, convex sets, spots, local groups). Desolneux, 
et al. [3] explored the connection between this principle and image processing in a 
probabilistic setting for the detection of perceptual contours in natural images. 
Instead of using a prior to model the observations, they proceeded by modeling the 
noise. Structures that deviate largely from the noise model are deemed perceptually 
meaningful. This approach supports detection of object boundaries from natural 
images. A link between this probabilistic approach and Mathematical Morphology has 
been proposed by Dokladal [4] to detect cracks in materials.  
  
AI models too can be constrained to be sensitive to perceptually significant primitives, 
like lines or edges. This notion, however, runs counter to mainstream views that 
constrained models cannot match the performance of unconstrained models. 
However, at the negligible cost of small score reductions, one can obtain interesting 
properties when a model is tuned/constrained to target some desirable function. For 
example, the incorporation of modules inspired by biology has been shown to confer 
robustness to deep networks [5]. Further attempts at constraining AI models to 
perceptually significant features, developed in an effort to obtain invariance to 
rotation [6][7], produced interesting results in terms of 1) size of the model and 2) 
computational requirements. The latter factor is particularly interesting in relation to 
lowering the carbon footprint of AI models.  
  
Visual processing of simple image elements (such as lines and edges) does not happen 
inside a cognitive vacuum: it may differ when those simple elements are embedded 
within natural scenes that look more like what we see every day, as opposed to the 
featureless backgrounds that are normally used in the laboratory. We know a good 
amount about the mechanisms that support vision in a simple setup (i.e. involving a 
simple stimulus with no natural meaningful content). We know virtually nothing about 
how those mechanisms may change and/or be augmented/replaced by new 
mechanisms under conditions that are closer to natural vision (i.e. when the image 
starts making sense and contains recognizable objects). In this thesis we will study 
how visual primitives (lines, edges, junctions) interact and how their spatial relations 
could be used by an AI model to efficiently use the semantic information [8] in the 
image to recognize objects and scenes.  
  
Going towards these objectives we will constraint a model to operate on perceptual 
primitives such as lines. The features sensitive to these primitives will be fitted to data 
via learning. A promising tool for efficient encoding of spatial arrangements and 
relations are graph convolutional networks (GCN), introduced by Bruna et al. [9] and 
developed later by Kipf and Welling [10] to architecture that later became known as 



GCN. Since [10], the graph topology understanding remained on the level of 
immediate neighbors until Zhu et al. [11] proposed the H2GCN to encode a high-order 
network information from middle layers, and Qian et al. [12] explored that the 
performance of GCNs is related to the alignment among features, graph, and ground 
truth. Recently Wang et al. [13] proposed to integrate the graph motif-structure 
information into the convolution operation of each layer.   
  
We will start on toy datasets and go progressively towards more complex datasets 
containing natural scenes. Various GCN architectures will be tested, and data ablation 
and model ablation will show how spatial relations can be learnt by the model to 
recognize objects. Further research on complex natural images will clarify how visual 
perception in mammals can help the design of frugal models requiring less data and 
time to learn.   
  
The potential benefits of encoding the geometry and topology of perceptually 
significant primitives from image into a graph are significant. Indeed, a perceptually 
based model will not only be more efficient in terms of computational requirements, 
but it will also become data frugal, faster to train, and more robust to adversarial 
attacks. Such models will pave the way for a sustainable future with energy efficient, 
environment friendly AI.  
  
This PhD is a new, emerging collaboration between two PSL institutions: the MINES 
Paris PSL, and the ENS PSL. These laboratories involved in this PhD support 
complementary expertise in artificial intelligence and visual perception.   
 
  
Acknowledgment: The funding is provided by the TTI.5 Transition Institute  

 

PhD Advisors:  
• DOKLADAL Petr, Domain : Intelligence Artificielle / Informatique  

Affiliation : CMM / Mathématique et Systèmes / MINES Paris PSL  
• NERI Peter, Domain : Perception / Sciences cognitives  

Affiliation : Laboratoire des systèmes perceptifs / Département d’études cognitives / 
ENS PSL  

 

Doctoral School:    
ISMEE Mathématiques et Systèmes, École doctorale 621, Ingénierie des Systèmes, 
Matériaux, Mécanique, Énergétique  
 
 
Application condition: finished M2 programme, AI coding skills (tensorflow, pytorch), 
with excellent academic record  
 
  
Application procedure: a prospective candidate should send his curriculum, 
academic track, motivation letter, two reference letters to: 
petr.dokladal@minesparis.psl.eu  
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